Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516811

RESUMO

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Assuntos
Ecossistema , Sais , Purificação da Água , Salinidade , Água do Mar/química
2.
Mol Ecol ; 33(1): e17186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905582

RESUMO

Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges ('Ojo'; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoides, Porites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar/química , Transcriptoma/genética
3.
Ann Rev Mar Sci ; 15: 277-302, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35773213

RESUMO

Constraining rates of marine carbonate burial through geologic time is critical for interpreting reconstructed changes in ocean chemistry and understanding feedbacks and interactions between Earth's carbon cycle and climate. The Quaternary Period (the past 2.6 million years) is of particular interest due to dramatic variations in sea level that periodically exposed and flooded areas of carbonate accumulation on the continental shelf, likely impacting the global carbonate budget and atmospheric carbon dioxide. These important effects remain poorly quantified. Here, we summarize the importance of carbonate burial in the ocean-climate system, review methods for quantifying carbonate burial across depositional environments, discuss advances in reconstructing Quaternary carbonate burial over the past three decades, and identify gaps and challenges in reconciling the existing records. Emerging paleoceanographic proxies such as the stable strontium and calcium isotope systems, as well as innovative modeling approaches, are highlighted as new opportunities to produce continuous records of global carbonate burial.


Assuntos
Carbonatos , Clima , Sedimentos Geológicos
4.
Rapid Commun Mass Spectrom ; 36(22): e9384, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36029176

RESUMO

RATIONALE: Phosphate (PO4 ) oxygen isotope (δ18 OPO4 ) analysis is increasingly applied to elucidate phosphorus cycling. Due to its usefulness, analytical methods continue to be developed and improved to increase processing efficiency and applicability to various sample types. A new pretreatment procedure to obtain clean Ag3 PO4 using solid-phase extraction (SPE) with zirconium-loaded resin (ZrME), which can selectively adsorb PO4 , is presented and evaluated here. METHODS: Our method comprises (1) PO4 concentration, (2) PO4 separation by SPE, (3) cation removal, (4) Cl- removal, and (5) formation of Ag3 PO4 . The method was tested by comparing the resulting δ18 OPO4 of KH2 PO4 reagent, soil extracts (NaHCO3 , NaOH, and HCl), freshwater, and seawater with data obtained using a conventional pretreatment method. RESULTS: PO4 recovery of our method ranged from 79.2% to 97.8% for KH2 PO4 , soil extracts, and freshwater. Although the recovery rate indicated incomplete desorption of PO4 from the ZrME columns, our method produced high-purity Ag3 PO4 and accurate δ18 OPO4 values (i.e., consistent with those obtained using conventional pretreatment methods). However, for seawater, the PO4 recovery was low (1.1%), probably due to the high concentrations of F- and SO4 2- which interfere with PO4 adsorption on the columns. Experiments indicate that the ZrME columns could be regenerated and used repeatedly at least three times. CONCLUSIONS: We demonstrated the utility of ZrME for purification of PO4 from freshwater and soil extracts for δ18 OPO4 analysis. Multiple samples could be processed in three days using this method, increasing sample throughput and potentially facilitating more widespread use of δ18 OPO4 analysis to deepen our understanding of phosphorus cycling in natural environments.


Assuntos
Fosfatos , Solo , Água Doce , Isótopos de Oxigênio/análise , Fosfatos/análise , Fósforo/análise , Hidróxido de Sódio/análise , Extração em Fase Sólida , Zircônio
5.
Proc Natl Acad Sci U S A ; 119(31): e2202018119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881806

RESUMO

The triple oxygen isotope composition (Δ'17O) of sulfate minerals is widely used to constrain ancient atmospheric pO2/pCO2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the [Formula: see text]O and Δ'17O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ'17O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably.


Assuntos
Isótopos de Oxigênio , Água do Mar , Sulfatos , Isótopos de Oxigênio/análise , Água do Mar/química , Água do Mar/microbiologia , Sulfatos/química , Óxidos de Enxofre
6.
J Fungi (Basel) ; 7(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34682226

RESUMO

Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the airborne mycobiome. We analyzed the diversity and relative abundance of fungi in nine airborne metagenomes collected on clear days ("background") and during dust storms in the Eastern Mediterranean. The negative correlation between the relative abundance of fungal reads and the concentrations of atmospheric particulate matter having an aerodynamic diameter smaller than 10 µm (PM10) indicate that dust storms lower the proportion of fungi in the airborne microbiome, possibly due to the lower relative abundance of fungi in the dust storm source regions and/or more effective transport of bacteria by the dust. Airborne fungal community composition was altered by the dust storms, particularly those originated from Syria, which was enriched with xerophilic fungi. We reconstructed a high-quality fungal metagenome-assembled genome (MAG) from the order Cladosporiales, which include fungi known to adapt to environmental extremes commonly faced by airborne microbes. The negative correlation between the relative abundance of Cladosporiales MAG and PM10 concentrations indicate that its origin is dominated by local sources and likely includes the indoor environments found in the city.

7.
Science ; 371(6536): 1346-1350, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33766882

RESUMO

Changes in the concentration and isotopic composition of the major constituents in seawater reflect changes in their sources and sinks. Because many of the processes controlling these sources and sinks are tied to the cycling of carbon, such records can provide insights into what drives past changes in atmospheric carbon dioxide and climate. Here, we present a stable strontium (Sr) isotope record derived from pelagic marine barite. Our δ88/86Sr record exhibits a complex pattern, first declining between 35 and 15 million years ago (Ma), then increasing from 15 to 5 Ma, before declining again from ~5 Ma to the present. Numerical modeling reveals that the associated fluctuations in seawater Sr concentrations are about ±25% relative to present-day seawater. We interpret the δ88/86Sr data as reflecting changes in the mineralogy and burial location of biogenic carbonates.

8.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33544820

RESUMO

The marine macroalgae Ulva sp. is considered an ecosystem engineer in rocky shores of temperate waters worldwide. Ulva sp. harbors a rich diversity of associated microbial epibionts, which are known to affect the algae's typical morphological development and 'health'. We examined the interaction between airborne microbes derived from atmospheric aerosols and Ulva ohnoi growth and physiological state. Specifically, we measured U. ohnoi growth rates and photosynthetic efficiency (Fv/Fm), alongside its microbial epibionts abundance, activity and diversity following dust (containing nutrients and airborne microorganisms) or UV-treated dust (only nutrients) amendments to filtered seawater. Parallel incubations with epibionts-free U. ohnoi (treated with antibiotics that removed the algae epibionts) were also tested to specifically examine if dust-borne microbes can replenish the epibiont community of U. ohnoi. We show that viable airborne microbes can restore U. ohnoi natural microbial epibionts communities, thereby keeping the seaweed alive and 'healthy'. These results suggest that microbes delivered through atmospheric aerosols can affect epiphyte biodiversity in marine flora, especially in areas subjected to high annual atmospheric dust deposition such as the Mediterranean Sea.


Assuntos
Alga Marinha , Ulva , Poeira , Ecossistema , Mar Mediterrâneo
9.
Nat Commun ; 12(1): 148, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420047

RESUMO

Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.

10.
Proc Biol Sci ; 286(1905): 20190572, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31238847

RESUMO

Coral calcification is expected to decline as atmospheric carbon dioxide concentration increases. We assessed the potential of Porites astreoides, Siderastrea siderea and Porites porites to survive and calcify under acidified conditions in a 2-year field transplant experiment around low pH, low aragonite saturation (Ωarag) submarine springs. Slow-growing S. siderea had the highest post-transplantation survival and showed increases in concentrations of Symbiodiniaceae, chlorophyll a and protein at the low Ωarag site. Nubbins of P. astreoides had 20% lower survival and higher chlorophyll a concentration at the low Ωarag site. Only 33% of P. porites nubbins survived at low Ωarag and their linear extension and calcification rates were reduced. The density of skeletons deposited after transplantation at the low Ωarag spring was 15-30% lower for all species. These results suggest that corals with slow calcification rates and high Symbiodiniaceae, chlorophyll a and protein concentrations may be less susceptible to ocean acidification, albeit with reduced skeletal density. We postulate that corals in the springs are responding to greater energy demands for overcoming larger differences in carbonate chemistry between the calcifying medium and the external environment. The differential mortality, growth rates and physiological changes may impact future coral species assemblages and the reef framework robustness.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/química , Animais , Calcificação Fisiológica , Região do Caribe , Clorofila A , Recifes de Corais , Água do Mar/química
11.
Environ Sci Technol ; 53(11): 6162-6170, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31090406

RESUMO

Lead concentrations [Pb] and isotope ratios (206Pb/207Pb, 208Pb/207Pb) have been measured in samples of total suspended particulate (TSP) aerosols, seawater, and suspended and sinking particles in the Gulf of Aqaba (GOA), Red Sea. Isotope ratios of Pb in seawater and in the soluble fraction of Pb in atmospheric TSP were similar suggesting that TSP is an important source of Pb in this area. Pb concentrations in seawater measured in this study (max 76.8 pmol kg-1) were much lower than those recorded at the same location in 2003-2004 (up to 1000 pmol kg-1). Changes in Pb isotope ratios in TSP depositions in these years indicate that leaded gasoline was responsible for the high dissolved Pb in GOA more than a decade ago and that recent regulation reduced Pb contamination. The similarity in Pb isotope ratios in suspended and sinking particles implies close interactions between these two size fractions. This study demonstrates the effect of the phasing out of leaded gasoline on TSP and seawater Pb chemistry in the Northern GOA; the rate of change in dissolved Pb concentrations in the GOA is faster than that reported for the open ocean possibly due to higher particle scavenging and the relatively short residence time of deep water in the Basin.


Assuntos
Chumbo , Material Particulado , Aerossóis , Monitoramento Ambiental , Oceano Índico , Água do Mar
12.
Environ Sci Technol ; 53(9): 4707-4716, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938522

RESUMO

Identifying nonpoint phosphorus (P) sources in a watershed is essential for addressing cultural eutrophication and for proposing best-management solutions. The oxygen isotope ratio of phosphate (δ18OPO4) can shed light on P sources and P cycling in ecosystems. This is the first assessment of the δ18OPO4 distribution in a whole catchment, namely, the Yasu River Watershed in Japan. The observed δ18OPO4 values in the river water varied spatially from 10.3‰ to 17.6‰. To identify P sources in the watershed, we used an isoscape approach involving a multiple-linear-regression model based on land use and lithological types. We constructed two isoscape models, one using data only from the whole watershed and the other using data from the small tributaries. The model results explain 69% and 96% of the spatial variation in the river water δ18OPO4. The lower R2 value for the whole watershed model is attributed to the relatively large travel time for P in the main stream of the lower catchment that can result in cumulative biological P recycling. Isoscape maps and a correlation analysis reveal the relative importance of P loading from paddy fields and bedrock. This work demonstrates the utility of δ18OPO4 isoscape models for assessing nonpoint P sources in watershed ecosystems.


Assuntos
Fosfatos , Fósforo , Ecossistema , Monitoramento Ambiental , Japão , Oxigênio
13.
Sci Rep ; 9(1): 5579, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944391

RESUMO

Excess nutrient loading to nearshore environments has been linked to declining water quality and ecosystem health. Macro-algal blooms, eutrophication, and reduction in coral cover have been observed in West Maui, Hawaii, and linked to nutrient inputs from coastal submarine groundwater seeps. Here, we present a forty-year record of nitrogen isotopes (δ15N) of intra-crystalline coral skeletal organic matter in three coral cores collected at this site and evaluate the record in terms of changes in nitrogen sources. Our results show a dramatic increase in coral δ15N values after 1995, corresponding with the implementation of biological nutrient removal at the nearby Lahaina Wastewater Reclamation Facility (LWRF). High δ15N values are known to be strongly indicative of denitrification and sewage effluent, corroborating a previously suggested link between local wastewater injection and degradation of the reef environment. This record demonstrates the power of coral skeletal δ15N as a tool for evaluating nutrient dynamics within coral reef environments.


Assuntos
Antozoários/metabolismo , Isótopos de Nitrogênio/metabolismo , Nutrientes/metabolismo , Animais , Recifes de Corais , Ecossistema , Monitoramento Ambiental/métodos , Eutrofização/fisiologia , Água Subterrânea , Havaí , Nitrogênio/metabolismo , Esgotos , Poluentes Químicos da Água/metabolismo , Qualidade da Água
14.
Science ; 361(6404): 804-806, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30026315

RESUMO

The consequences of global warming for fisheries are not well understood, but the geological record demonstrates that carbon cycle perturbations are frequently associated with ocean deoxygenation. Of particular interest is the Paleocene-Eocene Thermal Maximum (PETM), where the carbon dioxide input into the atmosphere was similar to the IPCC RCP8.5 emission scenario. Here we present sulfur-isotope data that record a positive 1 per mil excursion during the PETM. Modeling suggests that large parts of the ocean must have become sulfidic. The toxicity of hydrogen sulfide will render two of the largest and least explored ecosystems on Earth, the mesopelagic and bathypelagic zones, uninhabitable by multicellular organisms. This will affect many marine species whose ecozones stretch into the deep ocean.


Assuntos
Organismos Aquáticos , Sulfeto de Hidrogênio/toxicidade , Oxigênio/metabolismo , Ciclo do Carbono , Modelos Teóricos , Oceanos e Mares , Oxigênio/análise
15.
Water Res ; 144: 183-191, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029077

RESUMO

Seawater reverse osmosis (SWRO) is becoming an increasingly important source of potable water in arid and semi-arid regions worldwide. Discharge of brine-effluent from desalination facilities has been shown to significantly impact coastal marine ecosystems ranging from seagrass meadows to microbial communities. In this study, we examined the impacts of increased salinity (10% above ambient) and presence of antiscalants (0.2 mg L-1, polyphosphonate-based) on three reef-building coral species; Stylophora pistillata, Acropora tenuis and Pocillopora verrucosa, from the Gulf of Aqaba (northern Red-Sea). Our results indicate that the corals, as well as associated bacteria and algae, were significantly impaired by the elevated salinity and antiscalants, leading to partial bleaching. Specifically, the abundance of bacteria and symbiotic algae as well as calcification rates were typically lower (20-85%, 50-90% and 40-50%, respectively) following incubations with both amendments. However, the impact of desalination brine was often species-specific. Thus, we propose that the ecotoxicological criteria used for hard corals should be determined based on the sensitivity of key species in the community dominating the area affected by desalination discharge.


Assuntos
Antozoários/fisiologia , Ecotoxicologia/métodos , Purificação da Água/métodos , Animais , Recifes de Corais , Ecossistema , Oceano Índico , Compostos Organofosforados , Osmose , Salinidade , Água do Mar/química
16.
Sci Total Environ ; 639: 785-792, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803049

RESUMO

This study investigates variables that shape coastal stakeholders' knowledge about marine ecosystems and impacts of seawater desalination. The influence of trans-situational and situation-specific variables on self-assessed and factual knowledge among coastal residents and commercial marine stakeholders. Data were collected using a questionnaire based survey administered to a random sample of coastal residents and commercial marine stakeholders in eight communities in central California. Knowledge of biological features was higher than knowledge of physical and chemical processes. Both trans-situational and situation-specific variables were significant predictors of knowledge, in particular gender, education, and ocean use patterns. TV and social media were the only information sources that correlated negatively with knowledge. Predictors for distinct types of knowledge were different and provide insights that could help target specific ocean literacy gaps. The study also finds that commercial marine stakeholders were more knowledgeable than other coastal residents. Having an economic stake in the marine environment appears to be a strong motivation to be more educated about the ocean.


Assuntos
Ecossistema , Salinidade , Água do Mar/química , California , Monitoramento Ambiental , Política Ambiental
17.
Nat Commun ; 9(1): 1619, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691412

RESUMO

Ba proxies have been broadly used to reconstruct past oceanic export production. However, the precise mechanisms underlying barite precipitation in undersaturated seawater are not known. The link between bacterial production and particulate Ba in the ocean suggests that bacteria may play a role. Here we show that under experimental conditions marine bacterial biofilms, particularly extracellular polymeric substances (EPS), are capable of bioaccumulating Ba, providing adequate conditions for barite precipitation. An amorphous P-rich phase is formed at the initial stages of Ba bioaccumulation, which evolves into barite crystals. This supports that in high productivity regions where large amounts of organic matter are subjected to bacterial degradation, the abundant EPS would serve to bind the necessary Ba and form nucleation sites leading to barite precipitation. This also provides new insights into barite precipitation and opens an exciting field to explore the role of EPS in mineral precipitation in the ocean.


Assuntos
Bactérias/metabolismo , Bário/metabolismo , Biopolímeros/metabolismo , Bactérias/química , Bário/química , Biofilmes , Biopolímeros/química , Água do Mar/análise , Água do Mar/microbiologia
18.
Environ Sci Technol ; 52(1): 98-106, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192763

RESUMO

Grasslands throughout the world are responding in diverse ways to changing climate and environmental conditions. In this study we analyze indicators of phosphorus limitation including phosphorus concentrations, phosphorus to nitrogen, and carbon ratios, oxygen isotope ratios of phosphate in vegetation, and phosphatase enzyme activity in soil to shed light on potential effects of climate change on phosphorus availability to grassland vegetation. The study was conducted at the Jasper Ridge Global Change Experiment (JRGCE), California where manipulations mimicking increases in temperature, water, nitrogen and carbon-dioxide have been maintained for over 15 years. We compare our results to an earlier study conducted 3 years after the start of the experiment, in order to assess any change in the response of phosphorus over time. Our results suggest that a decade later the measured indicators show similar or only slightly stronger responses. Specifically, addition of nitrogen, the principle parameter controlling biomass growth, increased phosphorus demand but thresholds that suggest P limitation were not reached. A study documenting changes in net primary productivity (NPP) over time at the JRGCE also could not identify a progressive effect of the manipulations on NPP. Combined these results indicate that the vegetation in these grassland systems is not very sensitive to the range of climate parameters tested.


Assuntos
Mudança Climática , Fósforo , California , Ecossistema , Pradaria , Solo
19.
Sci Total Environ ; 579: 1356-1365, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923579

RESUMO

After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake.


Assuntos
Monitoramento Ambiental , Fosfatos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Great Lakes Region , Lagos/química , Fósforo/análise
20.
PLoS One ; 11(1): e0146707, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26784986

RESUMO

Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession.


Assuntos
Cálcio/análise , Água do Mar/química , Carbonato de Cálcio/análise , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...